3,779 research outputs found

    Matter radii of light halo nuclei

    Get PDF
    We re-examine the matter radii of diffuse halo nuclei, as deduced from reaction cross section measurements at high energy. Careful consideration is given to the intrinsic few-body structure of these projectiles and the adiabatic nature of the projectile-target interaction. Using 11^{11}Li, 11^{11}Be and 8^{8}B as examples we show that data require significantly larger matter radii than previously reported. The revised value for 11^{11}Li of 3.55 fm is consistent with three-body models with significant 1s1s-intruder state components, which reproduce experimental 9^{9}Li momentum distributions following 11^{11}Li breakup, but were hitherto thought to be at variance with cross section data.Comment: 8 pages RevTeX plus 5 Postscript figures. Figures also available at http://www.ph.surrey.ac.uk/scnp/jakpub/figures.html Scheduled tentatively for 13May96 issue of Phys. Rev. Let

    Numerical Modeling of Pulse Wave Propagation in a Stenosed Artery using Two-Way Coupled Fluid Structure Interaction (FSI)

    Full text link
    As the heart beats, it creates fluctuation in blood pressure leading to a pulse wave that propagates by displacing the arterial wall. These waves travel through the arterial tree and carry information about the medium that they propagate through as well as information of the geometry of the arterial tree. Pulse wave velocity (PWV) can be used as a non-invasive diagnostic tool to study the functioning of cardiovascular system. A stenosis in an artery can dampen the pulse wave leading to changes in the propagating pulse. Hence, PWV analysis can be performed to detect a stenosed region in arteries. This paper presents a numerical study of pulse wave propagation in a stenosed artery by means of two-way coupled fluid structure interaction (FSI). The computational model was validated by the comparison of the simulated PWV results with theoretical values for a healthy artery. Propagation of the pulse waves in the stenosed artery was compared with healthy case using spatiotemporal maps of wall displacements. The analysis for PWV showed significance differences between the healthy and stenosed arteries including damping of propagating waves and generation of high wall displacements downstream the stenosis caused by flow instabilities. This approach can be used to develop patient-specific models that are capable of predicting PWV signatures associated with stenosis changes. The knowledge gained from these models may increase utility of this approach for managing patients at risk of stenosis occurrence

    Cryoprotectant-free vitrification of human spermatozoa in new artificial seminal fluid

    Get PDF
    Vitrification is a new method that has been recently introduced in Assisted Reproduction Technique programs. The aim of this study was to design a new medium similar to normal human seminal fluid (SF), formulation artificial seminal fluid (ASF), and to compare the cryoprotective potency of this medium with SF and human tubal fluid (HTF) medium. Thirty normal ejaculates were processed with the swim-up technique and sperm suspensions were divided into four aliquots: (i) fresh sample (control); (ii) vitrification in HTF medium supplemented with 5 mg/mL human serum albumin and 0.25 mol sucrose (Vit HTF); (iii) vitrification with patients' SF (Vit SF); and (iv) vitrification in ASF (Vit ASF). After warming, sperm parameters of motility, viability, and morphology were analyzed using WHO criteria. Also, sperm pellets were fixed in 2.5% glutaraldehyde and processed for scanning electron microscopy and transmission electron microscopy observations. The results showed that progressive motility (46.09 ± 10.33 vs. 36.80 ± 13.75), grade A motility (36.59 ± 11.40 vs. 16.41 ± 11.24), and normal morphology (18.74 ± 8.35 vs. 11.85 ± 5.84) and viability (68.22 ± 10.83 vs. 60.86 ± 11.72) of spermatozoa were significantly higher in Vit ASF than in Vit HTF. All parameters were better in Vit ASF than in Vit SF, but only viability was significantly different (p = 0.006). After cryopreservation, deep invagination in cytoplasm and mechanically weak point sites and folded tail were commonly observed. But, this phenomenon was more significant in Vit HTF and Vit SF than in ASF (p < 0.05). In transmission electron microscopy evaluation, acrosome damage, plasma membrane loss, chromatin vacuolation, and disruption of mitochondria arrangement and structures were observed in all vitrified groups. Adherence of several tail sections together was also seen in all cryo groups. But this was seen more in Vit HTF and Vit SF than in ASF (p < 0.05). In conclusion, vitrification of human spermatozoa with ASF can effectively preserve the quality of sperm motility in comparison with Vit HTF. © 2016 American Society of Andrology and European Academy of Andrology

    Visualization of uncertainty and analysis of geographical data

    Get PDF
    A team of five worked on this challenge to identify a possible criminal strucutre within the Flitter social network. Initially we worked on the problem individually, deliberately not sharing any data, results or conclusions. This maximised the chances of spotting any blunders, unjustified assumptions or inferences and allowed us to triangulate any common conclusions. After an agreed period we shared our results demonstrating the visualization applications we had built and the reasoning behind our conclusions. This sharing of assumptions encouraged us to incorporate uncertainty in our visualization approaches as it became clear that there was a number of possible interpretations of the rules and assumptions governing the challenge. This summary of the work emphasises one of those applications detailing the geographic analysis and uncertainty handling of the network data. ©2009 IEEE
    corecore